
Evaluation of the Integral I,(b) = 2 1 s X 
n 

cos (bX) dx 

By R. G. Medhurst and J. H. Roberts 

This integral appears in a number of diverse problems (see, e.g., [1], [2], and [6]). 
The present authors required it in connection with certain operations involving 
"white" noise. For example, the intermodulation distortion generated by taking 
the nth power of a narrow-band, high-frequency white noise is proportional to 
In(b): b = 0 corresponds to the distortion level at the mid-band frequency, b = 1 
to the distortion level at the edges of the band, b - 2 to the distortion level at fre- 
quencies spaced by twice the semi-bandwidth from the center frequency, and so on. 

In closed form, In(b) is given [3] by 

Inb z (1)r(b + n - 2 - 

In(b) = 0r-1 ri (n-r)! , 0 < b < n 

(where r takes integral values), 
= -O n < b < oo. 

(The lower limit of r is not correct in [3].) The special case of this formula for b = 0 
is given in [4], [5], and [7]. This expression for In(b) is useful for small n, but becomes 
prohibitively cumbersome, even for b = 0, as n increases beyond the range covered 
in [2]. One is thus led to seek a limiting form for large n. 

We consider first the case b = 0. For the smaller n's it is practicable to express 
In(0) in rational form, and this is done up to n = 12 in [4]. 

The following Table 1 extends Grimsey's table up to n = 16. In [2], a ten-place 
table is given for 1 ? n ? 30. The entry for n = 30 is in error, and should read 
0.25104 85150. 

Goddard [5] takes to task the author of [1] for his lack of rigour, and attempts 
to supply a deficiency in that reference by deriving what he claims to be an asymp- 
totic expansion for In(O), applicable for large n. In fact, while Goddard's method is 
of considerable interest it involves steps of which the region of applicability needs 
careful scrutiny. (He has, in addition, made an analytical error resulting in an in- 
correct coefficient for his final term.) 

Goddard's approachWis based on a relation which, after correcting some misprints 
in the version in [5], we can give as 

(sin x) X B 
log = _E 2K2K (2x)2K 

where the BK's are the Bernoulli numbers. 
Need for caution is immediately apparent, since the left-hand side becomes 

imaginary for x in the ranges (2m -1 )r to 2mir (m = 1, 2, 3, etc.), while the right- 
hand side is always a sum of real terms. It can, in fact, be readily shown that the 
right-hand side diverges for x ? ir. Goddard then writes 

( 1) (sln x)n = exp [-n E 2K(2'EK)e (2x)K] 
_____ (sin ~ ~ ya K(K) exp 
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tl.lJ 

= Ll t L j t^ 

\-2 6 ' 

where the a's are functions of n to be determined, and proceeds to integrate expres- 
sion (1.1) term by term, using the relation 

2 / exp (-nx )2K dx (12K (2K 1)!1 (6 

TABLE 1 

n In(0) 

13 20646903199/54499737600 
14 27085381/74131200 
15 467168310097/1322526965760 
16 2330931341/68108040000 

The coefficients am are obtained by expanding the exponential expression (1) after 
removing the term exp (-nx2/6), and collecting powers of x. Each term obtained 
by integrating the terms of (1.1) yields sums of inverse powers of n (together with 
the factor -V(6/rn)), and these can be collected to yield a power series in l/n. 
Fortunately, there are only a finite number of contributions to each power of 1/n. 

Goddard obtained an expansion, in this way, up to (1/n)3. However, the last 
terin he gives is in error, since he failed to take account of all contributions. We have 
evaluated in closed form the coefficients of terms up to (1/n )6. The labour increases 
rapidly with the order of the term, and after this point it only seemed wrorth com- 
puting the coefficients to a few significant figures. As far as it has been taken, the 
expansion is as follows: 

6 3 1 ~13 1 27 1 52791 1 
In(0) 7rn ) [ 20 n 1120 n2 + 3200 n3+942400 n4 

482427 1_ 124996631 1 
(2) + 66560000 - 100352000-i - 0.0386166 1 

1 1 11 
- 0.027677 I + 0.12245 - + 0.4523 - ]. 

Presumably, this is a divergent series (though, since the coefficients are not 
known in analytical form, it is not easy to see how this could be proved), and God- 
dard claims it is asymptotic. In fact, after making the correction already mentioned 
to the last entry of the table of [2], formula (2) yields In(O) values in agreement to 
the full ten places with those tabulated over the range 17 < n ? 30. At n _ 16 
there is a disagreement of one unit in the last place, while at n = 15 there is exact 
agreement. For n = 14, 13 and 12 the agreement is increasingly poor, the last two 
digits from formula (2) being 93, 56 and 02, respectively, whereas the corresponding 
exact values are 95, 45 and 52. 

It should be emphasized that the discrepancy is not due to a failure of initial 
convergence. For n = 12, eleven terms of the series yield a sum +0.39392 55601 869, 
the final term being +0.00000 00000 029. This is to be compared with the true value 
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0.39392 55651 7: if the series were convergent, or were asymptotic in the sense that 
the error is less in magnitude than the last included term, it is clear that ten-place 
accuracy should have resulted. 

The discrepancy has, in fact, a rather interesting source. The expression 
((sin x)/x)', when plotted out, will clearly consist of a succession of peaks (positive 
for even n, and of alternating sign for odd n) centered round x = 0, x = 4.4934, 
etc. In the region 0 < x < ir, containing the first peak, the series in expression (1.1 ) 
converges so that (1.1) represents the required expression with increasing accuracy 
as more terms are taken. But in the region containing the second peak, the ex- 
ponential in (1.1) becomes, for moderate n, vanishingly small to the order of ac- 
curacy in which we are interested, and the terms of the series are not such as to 
counterbalance the exponential. Consequently, (1.1) cannot include the contribu- 
tion of the second and later peaks, and, in fact, it represents an approximation only 
to the contribution of the first peak to In(O). 

This can readily be put on a numerical basis. It is easy to show that a good ap- 
proximation to the contribution of the second peak is 

1/(A6) {71 (cos Xo)n 1- (4 + X2) X 

wherexo is the second root of tan x = x. For n- 12, this gives +0.00000 00049 6, 
and adding this to the contribution from expression (2) given above, we arrive at 
the value 0.39392 55651 5, which is in adequate agreement with the true value. The 
discrepancies at n = 13 and 14, already noted, are accounted for similarly. The 
correction is negligible for larger n's. 

We have, accordingly, used formula (2), with the aid of an Hec 2M digital com- 
puter, to extend the table in [2] up to a value of n such that a small number of terms 
of the formula will suffice to compute further entries. Table 2 covers the range 
30 = n < 100. Thereafter, four terms of formula (2) give ten-place accuracy or 
better. 

Returning to the general form In(b), Goddard recommends using, for large n, 
an expansion derived in the same way as formula (2) above. Goddard's expansion, 
taken to two more terms than he gives, is 

x6 p (_3b2) { 3- 3 (_) + (92 13 (1)2 

- 9 -4 +81 b2 _27 ) (1 -(l 280 3200 

+ 
(5660 b41600 b+3942400) n 

The leading term is given without derivation in [6]. 
Since in the fourth term of the series b appears to a higher power than 1/n (in 

later terms the largest excess of the power of b over that of 1/n increases without 
limit), the approximation is obviously useless for large n and b not small, but it 
may be useful for small b (say < 1), where only limited accuracy is required. 

For general b and large n we have not found a satisfactory computation pro- 
cedure. However, for integral b, a suitable recurrence formula is readily derived. 
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TABLE 2 

2 l__si n x____ 

n ~~~~In(O) ndI(O 
_ ~ ~ ~ ~ ~ ~~~i x 

30 0.25104 85150 66 0.16972 24991 
31 0.24700 63826 67 0.16845 68919 
32 0.24315 33907 68 0.16721 91807 
33 0.23947 52362 69 0.16600 83556 
34 0.23595 90855 70 0.16482 34572 
35 0.23259 33864 71 0.16366 35732 
36 0.22936 77077 72 0.16252 78358 
37 0.22627 26033 73 0.16141 54185 
38 0.22329 94960 74 0.16032 55342- 
39 0.22044 05769 75 0.15925 74323 
40 0.21768 87196 76 0.15821 03967 
41 0.21503 74049 77 0.15718 37440 
42 0.21248 06563 78 0.15617 68214 
43 0.21001 29831 79 0.15518 90047 
44 0.20762 93306 80 0.15421 96975 
45 0.20532 50370 81 0.15326 83288 
46 0.20309 57944 82 0.15233 43521 
47 0.20093 76156 83 0.15141 72438 
48 0.19884 68037 84 0.15051 65022 
49 0.19681 99255 85 0.14963 16462 
50 0.19485 37880 86 0.14876 22145 
51 0.19294 54167 87 0.14790 77639 
52 0.19109 20377 88 0.14706 78691 
53 0.18929 10594 89 0.14624 21216 
54 0.18754 00585 90 0.14543 01285 
55 0.18583 67656 91 0.14463 15123 
56 0.18417 90530 92 0.14384 59096 
57 0.18256 49233 93 0.14307 29708 
58 0.18099 25000 94 0.14231 23593 
59 0.17946 00172 95 0.14156 37508 
60 0.17796 58125 96 0.14082 68331 
61 0.17650 83184 97 0.14010 13048 
62 0.17508 60560 98 0.13938 68757 
63 0.17369 76283 99 0.13868 32655 
64 0.17234 17150 100 0.13799 02041 
65 0.17101 70663 

Integration by parts gives 

In(b)__ nj ($in x) cot x sin (bx) dx 

+2j(i,; X ) cosec x sin (bx) dx. 

The following results can be obtained straightforwardly. 
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b even: 

cot x sin (bx) 

=cosbx+2cos(b-2)x+2cos(b-4)x+ **+2cos2x+ 1, 

cosec x sin (bx) 

2 cos (b-l)x + 2 cos (b-3)x + 2 cos (b-5)x + + 2 cos x. 

b odd: 

cot x sin (bx) 

= cos bx + 2 cos (b-2)x + 2 cos (b- 4)x + + 2 cos x, 

cosec x sin (bx) 

- 2cos (b - 1)x + 2cos (b - 3)x + 2cos (b -5)x + + 2cos2x + 1. 

We consequently have the following relations. 
b even: 

In(b) = - [In(b) + 2I,(b- 2) + 2In(b - 4) + + 2In(2) + In(O)] 

+ b [2In+(b - 1) + 21n+1(b - 3) + *. + 2In+i(l)]. 

b odd: 

nF 
In(b) = - -In(b) + 2In(b- 2) + 2In(b- 4) + + 2In(l) 

n F 
+ b 2In+l(b - 1) + 2In+?(b - 3) + + 21n+1(2) + In+1(0)V. bL 

Using these relations, from a table of In(O) there cani be derived a table of In( 1) 
and then a table of In(2), and so on (at each stage the largest n is one less than 
at the previous stage though, in view of the existence of the simple limiting form for 
ln(O) whenn is large, this is no hardship). 
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